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Abstract

This mini-review emphasizes a psychoneuroimmunology (PNI) perspective of the hypothesis that stress and surgical

excision of the primary tumor can promote tumor metastasis. It first establishes the empirical and theoretical basis for

control of metastasis by cell-mediated immunity (CMI), as well as the interactive role of non-immunological risk

factors. It then describes the various aspects of surgery that suppress CMI, and the neuroendocrine mechanisms me-

diating suppression by stress and surgery. Last, it briefly reviews the empirical evidence, from animal and human

studies, for the promotion of metastasis by stress and surgery, with specific reference to the mediating role of CMI. It is

concluded that: (a) Immunological mechanisms most likely play a role in limiting metastasis in patients with solid

tumors. (b) Immunosuppression can be deleterious, especially when surgery is conducted early, before the tumor de-

velops insurmountable mechanisms to escape immune destruction. (c) The most sensitive period for the establishment

of metastases is the immediate aftermath of surgery. Interventions aiming at reducing stress and immunosuppression

should thus strive to start beforehand. (d) �Psychological and physiological insults activate similar neuroendocrine

mechanisms of immunosuppression. Therefore, a multimodal therapeutic approach should be used to prevent tumor

metastasis during the perioperative period. (e) Studies employing interventions aimed at reducing the surgical stress

response should preferably assess immunological indices with an established clinical relevance, and follow up long-term

recurrence provided sample size assure statistical power. (f) The progress toward earlier detection of cancer, and our

growing understanding of immunosuppression, continuously improves the chances for successful PNI interventions.

� 2003 Elsevier Science (USA). All rights reserved.
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1. A role for the immune system in controlling tumor

metastasis

Immunosuppression by stress or surgery can affect

tumor metastasis only to the extent that the immune

system controls cancer progression. While numerous

studies have indicated that patients� immunocytes can

recognize and often destroy autologous tumor cells

(Uchida et al., 1990), there is still profound skepticism

regarding the ability of the immune system to control

cancer development. This skepticism stems mainly from

the so far limited success of immunotherapy, and from

the findings that immunosuppressed transplant patients

do not exhibit significantly higher rates of the most

prevalent types of cancer (Bodey, Bodey, Siegel, &

Kaiser, 2000; Penn, 1999). However, the apparent in-

consistency between the above observations is resolved

by current theories of cancer immunology. These new

perspectives maintain that the interaction between cell
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mediated immunity (CMI) and the malignant tissue is a

microevolutionary process: at first, CMI is ignorant of

the newly transformed tissue that resembles self. Grad-

ually, the malignant tissue becomes more immunogenic,

attracts more capillaries and immunocytes, and starts to

emit danger signals (due to cellular stress resulting form

hypoxia and genetic instability). At this stage, CMI

recognizes and destroys many tumor cells, creating a

selection pressure that favors mutated tumor cells ca-

pable of evading recognition or destruction by immu-

nocytes. This process eventually leads to accumulation

of tumor escape mechanisms that renders CMI ineffec-

tive, at least with respect to controlling the primary tu-

mor (Hanahan & Weinberg, 2000; Pettit, Seymour,

O�Flaherty, & Kirby, 2000).

The crucial question with respect to controlling me-

tastasis, however, is whether CMI can limit the dis-

semination of tumor cells during this microevolutionary

process, and whether it can eradicate residual disease

after the surgical removal of the primary tumor. Re-

sidual disease consists of pre-established micrometasta-

ses, and single tumor cells in the lymphatics and

circulation. Theoretically, CMI has a better chance of

eradicating residual disease than primary disease: out-

side the protective microenvironment of the primary

tumor, the concentration of immunosuppressive sub-

stances (released by the malignant tissue) is much lower;

metastasizing tumor cells are outnumbered by various

types of immunocytes and proliferate and mutate more

slowly than cells of the primary tumor; and microme-

tastases do not have adequate blood supply for extended

growth (Pantel, Cote, & Fodstad, 1999).

Indeed, various lines of evidence, shortly reviewed

below, support the assertion that CMI interacts with the

malignant tissue, restricts its metastatic growth, and

plays a role in eradicating cancer after the primary tu-

mor is removed. Studies in animals repeatedly impli-

cated CMI in controlling tumor metastasis, specifically

pointing at CTLs, NK cells, NKT cells, tissue macro-

phages (e.g., Kupfer cells), dendritic cells, and TH cells

as key players (respectively, see Andreesen, Hennemann,

& Krause, 1998; Brittenden, Heys, Ross, & Eremin,

1996; Fong & Engleman, 2000; Godfrey, Hammond,

Poulton, Smyth, & Baxter, 2000; Svane, Boesen, & En-

gel, 1999; Toes, Ossendorp, Offringa, & Melief, 1999)

(for review see Smyth, Godfrey, & Trapani, 2001).

However, many animal studies, although methodologi-

cally sound, have been justly criticized for using tumor

lines that are highly immunogenic, and for not modeling

the natural microevolutionary course of human cancer

and its metastatic progression (Hewitt, 1983; Killion,

Radinsky, & Fidler, 1998). Thus, their findings can only

be accepted if corroborated by studies in humans, which

are described below.

Supporting the existence of anti-metastatic immunity

in humans is the long-appreciated ability of immuno-

cytes in some patients to identify and lyse autologous

tumor cells in vitro. In recent years, molecular mecha-

nisms underlying this capacity have been revealed for

both the adaptive and innate arms of CMI (Moretta,

Biassoni, Bottino, Mingari, & Moretta, 2000; Rosen-

berg, 2001). The extensive in vivo interaction between

CMI and the evolving malignant tissue is attested by the

growing numbers of escape mechanisms identified in

human and in animal malignancies, and their scarcity in

malignancies that have developed in immunodeficient

strains (Pawelec et al., 2000). Additional evidence come

from correlative clinical studies reporting that immune

competence at the time of cancer treatment is an inde-

pendent prognostic factor of recurrence-free survival.

Immune indices identified as positive indicators include

NK activity and specific CTLs response to the patient�s
tumor (McCoy, Rucker, & Petros, 2000; Taketomi et al.,

1998). Infiltration of the primary tumor by NK, CTL, or

dendritic cells, but not by macrophages, is also prog-

nostic of metastasis-free survival (al-Sarireh & Eremin,

2000; Menard et al., 1997; Takanami, Takeuchi, & Giga,

2001). Additional support for immunological control of

metastasis comes from immunosuppressed transplant

patients: while immunosuppressive drugs do not seem to

trigger de novo tumors (except for virally induced), they

occasionally reactivate the disease in patients long-re-

covered from cancer, and markedly increase the rate of

metastasis in patients carrying active disease (whether

diagnosed before or after transplantation) (Detry, Ho-

nore, Meurisse, & Jacquet, 2000). Finally, novel tech-

niques for identifying residual disease indicate that many

patients that have residual disease following surgery do

not proceed to develop metastases (Braun et al., 2000).

Taken together, it could be suggested that complete re-

mission following surgery often occurs not because all

malignant tissue has been removed, but because residual

disease is controlled by CMI (McCoy et al., 2000;

Morton, Ollila, Hsueh, Essner, & Gupta, 1999).

In sum, although in cancer patients CMI has clearly

failed to prevent the development of the primary tumor,

its potential role in restricting metastasis should not be

overlooked. If the primary tumor is removed early, be-

fore intractable escape mechanisms or sizeable metas-

tases develop, immunity may have a significant clinical

role in preventing recurrence. Suppression of CMI under

these conditions may increase recurrence rates, and

should be prevented.

2. Risk factors for progression of metastasis during the

perioperative period

In addition to immunosuppression, several non-im-

munological risk factors might promote metastasis im-

mediately after surgery. First, the malignant tissue is

notoriously non-cohesive and tumor cells are often
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embedded in its blood vessels. The surgical procedure

almost always disrupts the neoplasm or its vasculariza-

tion, leading to the release of tumor cells into the cir-

culation (Eschwege et al., 1995; Yamaguchi, Takagi,

Aoki, Futamura, & Saji, 2000). Second, the presence of

the primary tumor is believed to induce the release of

factors that limit angiogenesis (e.g., angiostatin, en-

dostatin), thus preventing micrometastases from grow-

ing beyond a critical size. As was shown by some animal

studies, the removal of the primary tumor discontinues

this inhibition and facilitates the development of me-

tastases (Folkman, 1990; Zetter, 1998). Third, following

surgery there is ample release of growth factors that

promote the healing of damaged tissue. These factors

are suspected to promote the development of metastasis

in local and remote sites (Abramovitch, Marikovsky,

Meir, & Neeman, 1999; Hofer et al., 1999).

Importantly, these processes accompany immuno-

suppression during the postoperative period, andmay act

in synergy to render the patient vulnerable to metastases

that could have been kept under control otherwise. For

example, reduced levels of angiogenesis-inhibitors com-

bined with high levels of growth factors may promote the

development of micrometastases into sizable metastases;

the shedding of tumor cells into the circulation accom-

panied by systemic suppression of CMI may promote

implantation of malignant cells in remote organs.

3. Mechanisms of immunosuppression by surgery and

stress

Major surgeries dramatically suppress CMI in ani-

mals and humans, and the degree and duration of im-

munosuppression are correlated with the degree of tissue

damage inflicted (Sietses, Beelen, Meijer, & Cuesta,

1999). Immunosuppression is an acknowledged postop-

erative complication that is believed to underlie the

outbreak of life-threatening infections such as pneumo-

nia and sepsis (Weighardt et al., 2000). Several aspects of

surgery were implicated in immunosuppression, includ-

ing anesthetic and analgesic drugs, hypothermia, tissue

damage, blood loss and transfusion, nociception, pain,

and perioperative anxiety and stress (see Section 4).

Immunosuppression is caused by an intricate array of

local and systemic physiological responses; as described

below, many of these responses involve a CNS-mediated

neuroendocrine feedback. Generally, whereas in the

vicinity of the wound the predominant response is pro-

inflammatory, in the periphery, where the fate of me-

tastases is determined, an opposite picture emerges:

there is a drastic reduction in pro-cellular TH1 type re-

sponses and suppression of CMI, with minor perturba-

tion to humoral immunity. These effects include marked

reductions in cell numbers, cytokine levels, cytotoxic

and secretory activity, and in vivo functions.

3.1. Local factors and cytokine responses

The response to tissue damage is initiated by local

products of cell lysis, humoral factors released by mac-

rophages and other resident cells, and by local neuro-

genic inflammatory agents. Prominent among these

factors are prostaglandins (e.g., PGE2), which are potent

in vitro suppressors of CMI and are known to be in-

volved in the initiation of the cytokine response (Faist,

Schinkel, & Zimmer, 1996). In humans, cyclooxygenase

inhibitors blunted the cytokine responses (Chambrier

et al., 1996) and the suppression of CMI following

surgery (Faist et al., 1990; Markewitz et al., 1996), and

in rats they were also shown to reduce the promotion of

metastasis by surgery (Colacchio, Yeager, & Hilde-

brandt, 1994; Rosenne, Melamed, Abudarham, & Ben-

Eliyahu, 2001). The local neurogenic pro-inflammatory

response is initiated by nociceptive afferents. It involves

local and spinal reflexes, and promotes erythema and

edema around the surgical wound by releasing numer-

ous compounds, including substance P (Schaffer, Beiter,

Becker, & Hunt, 1998; Rameshwar, 1997). The cytokine

response to major surgery includes an immediate surge

in systemic levels of pro-inflammatory cytokines (e.g.,

IL-6 and IL-8), and an increase in plasma levels of type 2

cytokines and other factors that interfere with CMI

(e.g., IL-10, IL-1rA, sTNF-ar, and sIL-2r) (Faist et al.,

1996; Lin, Calvano, & Lowry, 2000). Additionally, in

vitro studies indicated a marked decrease in the pro-

duction of pro-CMI cytokines (such as IL-2, IL-12,

IFN-c, TNF-a, and IL-1b) by monocytes and TH1 cells,

and an increase in the production of factors that inter-

feres with CMI, such as IL-10 and IL-1rA (Munford &

Pugin, 2001). The cytokine response to surgery is inter-

twined with the neuroendocrine response described be-

low. For example, IL-1 and IL-6 are critical for

initiating the HPA response to surgery, while sym-

pathetic activity was shown to trigger IL-10 release

following surgery (Woiciechowsky et al., 1998;

Woiciechowsky, Schoning, Lanksch, Volk, & Docke,

1999).

3.2. Neuroendocrine responses

3.2.1. The sympathetic nervous system (SNS)

The SNS innervates lymphoid organs and most leu-

kocytes express adrenergic receptors (Elenkov, Wilder,

Chrousos, & Vizi, 2000). During the perioperative pe-

riod and following psychological stress, catecholamines

are released systemically, as well as locally by nerve

endings that are believed to form ‘‘synapses’’ with leu-

kocytes (Elenkov et al., 2000). In vitro studies have in-

dicated that catecholamines can act directly to suppress

many aspects of CMI, including NK, CTL, and mac-

rophage activity (Elenkov et al., 2000). Catecholamines

can also act indirectly to suppress CMI by reducing

S. Ben-Eliyahu / Brain, Behavior, and Immunity 17 (2003) S27–S36 S29



macrophages and TH production of type 1 cytokines

(e.g., IL-12, TNF-a, and IFN-c), and by stimulating the

release of immunosuppressive factors including IL-10

and TGF-b (Platzer, Docke, Volk, & Prosch, 2000;

Woiciechowsky et al., 1999).

The ex vivo study of SNS effects on immunity is

hindered by two factors. First, activation of the SNS

causes massive redistribution of leukocyte subpopula-

tions, which often ends shortly after catecholamines

levels drop (Schedlowski et al., 1996). However, fol-

lowing harvesting of leukocytes into the test tube, the

momentary profile of leukocyte subpopulations is fixed.

This may yield ex-vivo findings of limited biological (in

vivo) significance. Second, some of the effects of cate-

cholamines on functions of CMI are transitory and de-

pend on the presence of catecholamines (Hellstrand,

Hermodsson, & Strannegard, 1985). Thus, effects of

catecholamines that do occur in vivo may not be pre-

served and depicted in ex-vivo studies in which the hu-

moral in vivo milieu is replaced by an artificial in vitro

medium. These two factors probably explain several

examples where ex-vivo findings are inconsistent with in

vivo and in vitro findings (Shakhar & Ben-Eliyahu,

1998).

Nevertheless, several groups provided compelling

evidence that in vivo blockade of the SNS could atten-

uate the immunosuppressive effects of surgery and stress.

Suppression of lymphocyte proliferation following lap-

arotomy was attenuated by a b-adrenergic antagonist

(Nelson & Lysle, 1998), as was the increase in IL-10

plasma levels after brain surgery (Woiciechowsky et al.,

1998). Stress and activation of the SNS were shown

to suppress various aspects of CMI, including macro-

phage and NK activity, and these effects were attenuated

by sympathetic blockade (Broug-Holub, Persoons,

Schornagel, Mastbergen, & Kraal, 1998; Hodgson,

Yirmiya, Chiappelli, & Taylor, 1999; Shimizu, Kaizuka,

Hori, & Nakane, 1996). In our studies, abdominal sur-

gery, anesthesia, hypothermia, social confrontation, and

swim stress all suppressed NK activity (per NK cell) and

promoted experimental metastasis. Furthermore, we

were able to attenuate these effects by employing b-
blockers, adrenal demedullation, or a ganglionic blocker

(Ben-Eliyahu, Page, Yirmiya, & Shakhar, 1999a; Ben-

Eliyahu, Shakhar, Page, Stefanski, & Shakhar, 2000;

Melamed, Bar-Yosef, Rosenne, Weisman, & Ben-Eli-

yahu, 2001; Rosenne et al., 2001; Stefanski & Ben Eli-

yahu, 1996). Taken together, in vitro, ex vivo, and in

vivo findings strongly suggest that the SNS is involved in

the suppression of CMI by surgery and stress (Elenkov

et al., 2000; Woiciechowsky et al., 1999).

3.2.2. The hypothalmo-pituitary–adrenal (HPA) axis

Surgery activates the HPA axis via a spinal pathway,

as well as through the release of IL-1 and IL-6 (Mas-

torakos, Chrousos, & Weber, 1993). Increased levels of

corticosteroids following surgery lasts for days and

correlates with the severity of surgery and the degree of

immunosuppression (Tashiro et al., 1999). Activation of

the HPA axis was once thought to be the most promi-

nent mediator of immunosuppression following stress or

surgery as corticosteroids are established in vitro im-

munosuppressors, and, when administered in pharma-

cological doses, are potent immunosuppressive drugs.

Indeed, the use of synthesis inhibitors or competitive

antagonists of corticosteroids reduced T-cell apoptosis

and metastasis following surgery in rats (Deguchi, Isobe,

Matsukawa, Yamaguchi, & Nakagawara, 1998), and

attenuated the suppression of monocyte activity in in-

jured mice (Cech, Shou, Gallagher, & Daly, 1994). In

addition, stress was shown to suppress various aspects of

CMI and promote infection via activation of the HPA

axis (Sheridan, Dobbs, Brown, & Zwilling, 1994).

However, a closer look reveals that surgeries that

increase corticosteroids levels to a similar degree can

cause different levels of immunosuppression (Redmond

et al., 1994), and that physiological levels of corticos-

teroids do not suppress some immune functions in vivo

(Bodner, Ho, & Kreek, 1998). Additionally, various

neuroendocrine interventions that do not affect corti-

costeroids levels (e.g., the blockade of the SNS) can

abolish some immunosuppressive and metastasis-pro-

moting effects of surgery or stress (Ben-Eliyahu et al.,

2000; Rosenne et al., 2001). Thus, other neuroendocrine

responses must also play a key role in mediating im-

munosuppression.

3.2.3. Opioids

Following surgery and stress opioids are released

from the pituitary, adrenal medulla, and from various

lymphocytes (Kavelaars, Ballieux, & Heijnen, 1990). It

has long been acknowledged that exogenous opiates,

administered centrally or systemically, can suppress

CMI (Carr & Serou, 1995). Among endogenous opiates,

b-endorphin is most recognized for such in vitro and in

vivo effects (Carr & Serou, 1995). Indeed, the opioid

antagonist naltrexone attenuated the reduction in NK

cytotoxicity, lymphocyte proliferation, and IFN-c pro-

duction caused by laparotomy (Nelson, Carrigan, &

Lysle, 2000). Naltrexone also attenuated immunological

perturbations caused by various types of stressors

(Panerai & Sacerdote, 1997; Shavit, Lewis, Terman,

Gale, & Liebeskind, 1984).

4. Empirical evidence that suppression of CMI by surgery

or stress can promote metastasis

A large number of studies in animals, employing

various tumor models, have convincingly demonstrated

that surgery and stress can promote metastasis. Many of

these studies have further shown that surgery and stress
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also suppress various immune indices, suggesting a

possible mediating role for CMI (e.g., Colacchio et al.,

1994; Da Costa, Redmond, & Bouchier-Hayes, 1998;

Shiromizu et al., 2000). Few studies have attempted to

provide more causative evidence that CMI indeed me-

diates these effects. For example, others and we reported

increased metastasis in immunocompetent animals, but

not in immunodeficient ones (Allendorf et al., 1999; Ben-

Eliyahu et al., 1999a). We further found that the periods

of NK suppression following surgery or stress coincide

with the periods of compromised in vivo resistance to

metastasis of the NK-sensitive MADB106 syngeneic line

(Ben-Eliyahu, Shakhar, Rosenne, Levinson, & Beilin,

1999b). Finally, when we examined host resistance to

lung metastasis of this tumor, and its relation to the ex

vivo cytotoxicity of pulmonary immunocytes against

this tumor, both functions were compromised by lapa-

rotomy, and the same treatment (NSAID+ b-blocker)
efficiently reversed both inhibitions (Rosenne et al.,

2001).

Because animal models of cancer do not always

simulate the human disease faithfully (Hewitt, 1983;

Killion et al., 1998), it is important to focus in this mini-

review on empirical evidence from clinical studies. Given

the methodological limitations of human studies, espe-

cially the lack of a non-operated control group, no direct

evidence that surgery or stress promote metastasis can

be expected. Nevertheless, while surgery itself cannot be

withheld from patients, some of its immunosuppressive

aspects have been modified. Employing different proce-

dures have caused different levels of immunosuppres-

sion, resulting, at times, in parallel effects on rates of

tumor recurrence. Described below are such concordant

effects in cancer patients. Taken into consideration to-

gether with homologous well-controlled studies in ani-

mals, they support the suggestion that surgery can

promote metastasis in cancer patients by suppressing

CMI.

First, general anesthesia was shown to suppress sev-

eral aspects of human CMI, including lymphocyte

numbers and blastogenic response, NK activity, and TH1

to TH2 ratios (Galley, DiMatteo, & Webster, 2000).

Local or regional anesthesia, on the other hand, is not

immunosuppressive, and when given to supplement

general anesthesia during surgery, was shown to atten-

uate the suppression of CMI (Koltun et al., 1996; Rem,

Brandt, & Kehlet, 1980). These benefits are attributable

to the blunting of the sympathetic and the HPA surgical

stress response (Koltun et al., 1996; Pflug & Halter,

1981), which are achieved by the blockade of both as-

cending (mainly nociceptive) and descending (mainly

sympathetic) fibers. Most importantly, the use of local

anesthesia instead of general anesthesia was recently

identified as an independent positive predictor of re-

currence-free survival, in a large-scale clinical trial in

melanoma patients (Schlagenhauff et al., 2000). Animal

studies indicated that various anesthetics can suppress

CMI and promote metastasis (Melamed et al., 2001),

and our recent studies demonstrated that the addition of

spinal block to rats operated under general anesthesia

reduced the promotion of metastasis by surgery (Bar-

Yosef et al., 2001; Page, Blakely, & Ben-Eliyahu, 2001).

Second, blood transfusion was shown to suppress

CMI in patients, causing perturbations in cytokine levels

and suppression of NK cytotoxicity and T-cell blasto-

genesis (Shao, Edelman, Sullivan, Nelson, & Shelby,

1998) (for review see Klein, 1999). Blood transfusion is a

well-documented risk factor for recurrence. Impor-

tantly, more than 30 clinical studies (approximately half

of those conducted) were also able to show that the

negative prognostic value of blood transfusion is inde-

pendent of other complications and risk factors associ-

ated with it (Klein, 1999). Animal studies clearly indicate

that transfusion per se suppresses CMI and promotes

metastasis, and provide more direct evidence for the

mediating role of CMI (Blajchman, Bardossy, Carmen,

Sastry, & Singal, 1993; Clarke, Burton, & Wood, 1993).

Third, to remove colon tumors, two successive sur-

geries rather than a single operation were used in the

past. This staged procedure resulted in increased rates of

metastasis and long-term mortality (Fielding & Wells,

1974), as was also shown by animal studies (Weese,

Ottery, & Emoto, 1986).

Fourth, minimally invasive surgeries (MIS) in pa-

tients (e.g., laparoscopy) have been shown to be less

immunosuppressive than standard procedures (e.g.,

laparotomy) (Vittimberga, Foley, Meyers, & Callery,

1998). Animal studies have shown that the use of MIS

also reduces the promotion of metastasis (Mutter et al.,

1999), presumably by decreasing immunosuppression

(Allendorf et al., 1999; Da Costa et al., 1998). In cancer

patients, studies have provided initial evidence that MIS

reduces recurrence rates in surgeries that are markedly

traumatic (e.g., thoracotomy for removing early-stage

lung carcinoma—Kaseda, Aoki, Hangai, & Shimizu,

2000; Lewis, Caccavale, Bocage, & Widmann, 1999;

Sugi, Kaneda, & Esato, 2000), but apparently not in less

immunosuppressive operations (e.g., excision of colo-

rectal tumors—Hartley, Mehigan, MacDonald, Lee, &

Monson, 2000). Substituting these traumatic surgeries

with MIS reduced sympathetic activation (Tschernko,

Hofer, Bieglmayer, Wisser, & Haider, 1996), cytokine

responses (Yim, Wan, Lee, & Arifi, 2000), and lymp-

hopenia (Leaver, Craig, Yap, & Walker, 2000), but did

not reduce the release of tumor cells into the circulation

(Yamashita, Kurusu, Fujino, Saisyoji, & Ogawa, 2000).

These findings suggest that reduced immunosuppression

is a mediating beneficial aspect of MIS, which may be

attributed to a reduction in tissue damage, bleeding,

neuroendocrine responses, and pain.

In sum, the findings from animal studies clearly in-

dicate that it is feasible for surgery to promote metas-
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tasis in cancer patients by suppressing CMI. However,

for methodological reasons, the evidence in humans is

no more than correlative. It seems that only clinical

trials aimed specifically at preventing perioperative im-

munosuppression could provide direct evidence and

clarify the circumstances in which the hypothesis holds

true in humans.

5. The critical perioperative period and implications for

psychoneuroimmunology-based clinical interventions

Surgical excision of the primary tumor presents an

opportunity to eradicate cancer because it removes the

major source of metastasizing cells, limits the potential

for further immuno-resistant mutations, and reduces

systemic levels of tumor-derived immunosuppressive

substances. However, in the short run, the surgery itself

is believed to increase the risk of metastases. As reviewed

above, surgery can do so by: (a) releasing tumor cells

into the circulation, (b) reducing anti-angiogenic factors,

(c) increasing growth factors, and (d) causing immuno-

suppression that results from the medical procedures

and from perioperative stress and anxiety. These dele-

terious consequences of surgery favor the survival and

implantation of newly-released tumor cells, and promote

the development of preexisting micrometastases. The

postoperative window of opportunity to eradicate can-

cer will close once residual tumor cells develop into large

metastases that can grow and escape immune control, as

did the primary tumor. Because most of the above

postoperative risk factors are transitory, lasting days or

weeks, and because the fate of residual disease (to ex-

pand or to be eradicated) is probably decided within

days (especially for circulating cells—Yamashita et al.,

2000), the immediate postoperative period seems to have

a disproportional weight in determining long-term re-

currence.

All considered, it seems critical to prevent immuno-

suppression during the perioperative period. Psycho-

neuroimmunological interventions should ideally start

before surgery, covering this critical period, and con-

tinue for as long as psychological distress persists.

Importantly, surgery and stress activate overlapping

neuroendocrine immunosuppressive responses, includ-

ing catecholamine, corticosteroid, and opioid secretion.

Psychological or psychopharmacological interventions

may have no beneficial effects immediately after surgery

because the responses they aim to reduce are activated in

parallel by physiological aspects of surgery (e.g., tissue

damage and pain). This consideration suggests that

multimodal interventions should be considered periop-

eratively. Noteworthy, although psychological distress

may induce smaller neuroendocrinological responses

than the physiological insult, it starts well before surgery

and continues long after the physiological effects of

surgery have subsided. Therefore, attending psycholog-

ical distress may be critical, as was suggested by selected

studies reporting that psychological interventions pro-

long survival time or reduce recurrence rates (e.g.,

Fawzy et al., 1993).

Because the most important clinical endpoints are

recurrence and survival rates, they must also be studied.

These studies, however, should only be initiated if en-

ough participants can be recruited to demonstrate a

significant improvement given the expected potency of a

psychoneuroimmunological intervention. For example,

if one expects to reduce the mortality rate from 30 to

25%, more than 1000 patients should be recruited to

each arm to ensure an 80% chance of reaching statistical

significance (i.e., having a power of 80%, using

a ¼ 0:05). On the other hand, if one expects a reduction

from 40 to 20%, only 74 patients per arm are needed (see

Table 1 for a complete array of probabilities, and sta-

tistical considerations). Studies that use samples that are

a priori too small may be detrimental to the field because

Table 1

The number of patients required in each arm in order to have 80% chance (power of 80%) of showing a statistically significant dif-

ference in mortality rates between two conditions

Probability of mortality in the treated population (P1)

.05 .1 .15 .2 .25 .3 .35 .4 .45

P0 ¼ :1 385

P0 ¼ :15 131 585

P0 ¼ :2 72 178 760

P0 ¼ :25 48 92 218 910

P0 ¼ :3 35 58 109 253 1035

P0 ¼ :35 27 41 67 123 281 1135

P0 ¼ :4 22 31 46 74 134 303 1210

P0 ¼ :45 18 25 34 50 80 142 319 1260

P0 ¼ :5 15 20 27 37 54 84 148 328 1286

Calculations are based on one-tailed test comparing two unknown proportions, with a ¼ 0:05. P0 and P1 are the assumed probability

in the non-treated and treated populations, respectively (Campbell, Julious, & Altman, 1995).
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they risk being erroneously interpreted as solid evidence

against the efficacy of psychoneuroimmunological in-

terventions. In reality, such studies are non-informative.

Finally, screening programs and novel methods of

cancer detection bring patients to surgery at earlier

stages of cancer development. Consequently, the chan-

ces that the patient�s immune system is still capable of

preventing metastasis and eradicating residual disease

are continuously improving, and so does the clinical

potential for interventions aimed at preventing immu-

nosuppression or boosting CMI during the perioperative

period. Additionally, our emerging understanding of

mechanisms that mediate immunosuppression by stress

and surgery fosters better interventions. It seems that the

broad array of medical considerations in treating cancer

patients should now incorporate the impact of psycho-

logical and physiological factors on immune-mediated

resistance to tumor metastasis.
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